organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dun-Jia Wang,^a* Chun-Yang Zheng^b and Ling Fan^b

^aHubei Key Laboratory of Bioanalytical Techniques, Department of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China, and ^bCollege of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: dunjiawang@163.com

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.002 Å R factor = 0.056 wR factor = 0.138 Data-to-parameter ratio = 15.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-(2-Furyl)-3-hydroxy-3-(2-methoxy-2-naphthyl)prop-2-en-1-one

Molecules of the title compound, $C_{18}H_{14}O_4$, crystallize as the enol tautomer, containing an intramolecular $O-H\cdots O$ hydrogen bond. The entire molecule is approximately planar.

Received 20 November 2006 Accepted 7 December 2006

Comment

1,3-Diketones possess a broad spectrum of useful and sometimes unique chemical properties, which make them extremely attractive as synthetic intermediates. They are also used widely for the preparation of metallocomplexes (Gorczynski *et al.*, 2005; Liang *et al.*, 2003). Molecular crystals of 1,3diketones are found to comprise enol tautomers, stabilized by a strong intramolecular $O-H \cdots O$ hydrogen bond (Bertolasi *et al.*, 1991; Gilli *et al.*, 2004; Vila *et al.*, 1991).

The title compound, (I) (Fig. 1), crystallizes as the enol tautomer, forming the expected intramolecular $O-H\cdots O$ hydrogen bond (Table 1). The entire molecule is approximately planar. The dihedral angles between the two aromatic rings (C16/C17/C18/O4/C15 and C5/C6/C11/C10/C9/C8) is 5.42 (5)°. The two adjacent six-membered rings in the naph-thyl system are almost coplanar and the dihedral angles between them is 1.02 (4)°.

Experimental

1-(2-Methoxynaphthalen-6-yl)ethanone (6.00 g, 0.03 mol), methylfuran-2-carboxylate (3.78 g, 0.03 mol), NaNH₂ (1.37 g, 0.035 mol) and dry diethyl ether (40 ml) were stirred for 6 h at room temperature under a nitrogen atomosphere. The reaction mixture was then acidified with dilute hydrochloric acid (*ca* 10 ml), and the ether layer was separated, washed with saturated NaHCO₃ solution (40 ml) and dried over anhydrous Na₂SO₄. The solvent was removed by evaporation and the residual solid was recrystallized from ethanol (100 ml) to give the title compound (yield 4.86 g, 55.1%, m.p. 414 K). Crystals suitable for X-ray diffraction were grown by slow evaporation of a CH₂Cl₂/ EtOH (2:1) solution at room temperature.

© 2007 International Union of Crystallography All rights reserved Crystal data

C18H14O4 $M_r = 294.29$ Monoclinic, $P2_1/c$ a = 3.9333 (7) Å b = 10.986 (2) Å c = 33.046 (6) Å $\beta = 90.956 (3)^{\circ}$ V = 1427.8 (4) Å³

Data collection

Bruker SMART CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1997) $T_{\min} = 0.972, T_{\max} = 0.989$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0571P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.056$	+ 0.3755P]
$wR(F^2) = 0.138$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} = 0.010$
3064 reflections	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ \AA}^{-3}$
203 parameters	$\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	
Table 1	

Z = 4

 $D_x = 1.369 \text{ Mg m}^{-3}$

 $0.30 \times 0.20 \times 0.06$ mm

8120 measured reflections

3064 independent reflections

2599 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.10 \text{ mm}^{-1}$

T = 298 (2) K

Plate, yellow

 $R_{\rm int} = 0.029$

 $\theta_{\rm max} = 27.0^{\circ}$

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O2−H2···O3	0.98 (2)	1.55 (2)	2.4899 (18)	158 (2)

H atoms bound to C atoms were included in idealized positions, with C-H = 0.93 (aromatic) or 0.96 Å (methyl), and allowed to ride during subsequent refinement, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}$ (methyl C). The methyl group was also allowed to rotate about its local threefold axis. Atom H2 of the hydroxyl group was located in a difference Fourier map and its position was refined freely, with $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm O}).$

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve

Figure 1

The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level for non-H atoms. The dashed line indicates the intramolecular O-H···O hydrogen bond.

structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

The authors are grateful to Hubei Normal University, the Natural Science Foundation of the Educational Commission of Hubei Province (Nos. J200522002 and Z200622001) for financial support.

References

- Bertolasi, V., Cilli, P., Ferretti, V. & Gilli, G. (1991). J. Am. Chem. Soc. 113, 4917-4925
- Bruker (1997). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA
- Bruker (1999). SAINT. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin USA
- Gilli, P., Bertolasi, V., Pretto, L., Ferretti, V. & Gilli, G. (2004). J. Am. Chem. Soc. 126, 3845-3855.
- Gorczynski, J. L., Chen, J. B. & Fraser, C. L. (2005). J. Am. Chem. Soc. 127, 14956-14957.
- Liang, F. S., Zhou, Q. G., Cheng, Y. X., Wang, L. X., Ma, D. G., Jing, X. B. & Wang, F. S. (2003). Chem. Mater. 15, 1935-1937.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany,

Vila, A. J., Lagier, C. M. & Olivieri, A. C. (1991). J. Phys. Chem. 95, 5069-5073.